MOLECULAR ORBITAL STUDY OF THE DISSOCIATIVE RECOMBINATION; $HC_3NH^+ + e^-$. IS IT POSSIBLE TO PRODUCE ALL OF ISOMERS OF CYANOACETYLENE?

<u>K. FUKUZAWA</u> AND Y. OSAMURA, Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171, Japan; H. F. SCHAEFER III, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.

The dissociative recombination reaction between HC_3NH^+ and an electron is one of the major route to produce cyanoacetylene, HC_3N , in interstellar clouds. We have studied various pathways of this recombination reaction producing HC_3N and its isomers, HNC_3 , HCCNC, and HCNCC, theoretically. Potential energy surfaces for the processes from neutralized HC_3NH are examined by using the *ab initio* molecular orbital method. The calculated result shows that HCCNC is also produced via the isomerization processes in addition to the products HC_3N and HNCCC from the direct hydrogen dissociation. Several product channels $C_2H + HNC$, $C_2H + HCN$, $NH + C_3H$, $CN + C_2H_2$, $C_3 + NH_2$ and $C_3N + H_2$ are shown to be energetically possible based on the thermochemical relationships.