MOLECULAR ORBITAL STUDY OF THE DISSOCIATIVE RECOMBINATION; \(\text{HC}_3\text{NH}^+ + e^- \). IS IT POSSIBLE TO PRODUCE ALL OF ISOMERS OF CYANOACETYLENE?

K. FUKUZAWA AND Y. OSAMURA, Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171, Japan; H. F. SCHAEFER III, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.

The dissociative recombination reaction between \(\text{HC}_3\text{NH}^+ \) and an electron is one of the major route to produce cyanoacetylene, \(\text{HC}_3\text{N} \), in interstellar clouds. We have studied various pathways of this recombination reaction producing \(\text{HC}_3\text{N} \) and its isomers, \(\text{HNC}_3 \), \(\text{HCCNC} \), and \(\text{HCNCC} \), theoretically. Potential energy surfaces for the processes from neutralized \(\text{HC}_3\text{NH} \) are examined by using the \textit{ab initio} molecular orbital method. The calculated result shows that \(\text{HCCNC} \) is also produced via the isomerization processes in addition to the products \(\text{HC}_3\text{N} \) and \(\text{HNCCC} \) from the direct hydrogen dissociation. Several product channels \(\text{C}_2\text{H} + \text{HNC} \), \(\text{C}_2\text{H} + \text{HCN} \), \(\text{NH} + \text{C}_3\text{H} \), \(\text{CN} + \text{C}_2\text{H}_2 \), \(\text{C}_3 + \text{NH}_2 \) and \(\text{C}_3\text{N} + \text{H}_2 \) are shown to be energetically possible based on the thermochemical relationships.