MOLECULAR ORBITAL STUDY OF THE HYDRATED CLUSTERS OF STRONG ACIDS WITH WATER MOLECULES

<u>S. RE</u>, Y. SUZUKI, AND Y. OSAMURA, Department of Chemistry, Faculty of Science, Rikkyo University , 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171, Japan; H. F. SCHAEFER III, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.

The molecular structures and vibrational frequencies of the hydrated clusters of the strong acids, $HCl\bullet(H_2O)_n$ and $H_2SO_4\bullet(H_2O)_n$; $n=1\sim5$, are examined by employing the density functional molecular orbital method. When the number of water molecules is small, the hydrated clusters take the hydrogen-bonded structures without proton transfer. In the cases of $n\geq4$, the proton transferred forms become dominant and there are many isomeric forms for both the direct ion-pair $X^-\bullet H_3O^+\bullet (H_2O)_{n-1}$, and indirect ion-pair $X^-\bullet (H_2O)_{n-1}\bullet H_3O^+$ structures, where X=Cl, HSO₄. The calculated IR spectra of the stable clusters clearly indicate the large red-shifts of the stretching frequencies of the H-Cl and the O-H bond of H_2SO_4 . The difference of the hydrated clusters of HCl, H_2SO_4 , and HF is also discussed.