THE ELECTRONIC STRUCTURE OF ScH⁺⁺, TiH⁺⁺, VH⁺⁺, CrH⁺⁺, AND MnH⁺⁺

<u>JAMES F. HARRISON</u>, PETER S. CHRISTOPHER, Chemistry Department and Center For Fundamental Materials Research, Michigan State University, East Lansing, MI 48824; , .

We will discuss the electronic structure of the ground and low-lying excited states of the titled transition metal hydrides. Of these ScH⁺⁺, TiH⁺⁺, and VH⁺⁺, are thermodynamically stable while CrH⁺⁺, and MnH⁺⁺ are expected to be very long lived. While the charge distribution for each molecule is approximately $M^{+1.85}$ H^{+0.15} the nature of the bonding changes very rapidly from a conventional sigma bond in ScH⁺⁺, to what may be described as an antiferromagnetic coupling of the Mn⁺⁺ ion to the H atom in MnH⁺⁺. We will discuss trends in D_e, bond lengths and vibrational frequencies and will compare with the corresponding neutral and monopositive hydrides.