A SPECTROSCOPIC STUDY OF CaOCH₃ USING THE PUMP/PROBE MICROWAVE AND THE MOLECULAR BEAM/OPTICAL STARK TECHNIQUES

KEI-ICHI NAMIKI, J. SCOTT ROBINSON, AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287.

The Stark effect on the ${}^{q}R_{22}(0,0.5)$ (ν = 17682.9251 cm⁻¹) and ${}^{q}P_{11}(0,1.5)$ (ν = 17682.1966 cm⁻¹) branch features of the (0,0) $B^{2}A_{1} - X^{2}A_{1}$ band system of calcium methoxide, CaOCH₃, was measured and analyzed to give the permanent electronic dipole moments, μ , of 1.58(8)D and 1.21(5)D for the $X^{2}A_{1}$ and $B^{2}A_{1}$ states, respectively. The dipole moments are compared with other monovalent calcium compounds and those predicted from a simple electrostatic model. Pure rotational transitions in the $X^{2}A_{1}$ state were recorded using the pump/probe microwave-optical double resonance technique. The proton magnetic hyperfine splitting pattern confirms that the symmetry of the ground electronic state is C_{3v} . The determined small negative value for the Fermi contact parameter (a_{F} = -0.419 MHz) is interpreted in terms of spin polarization effects. The determined spin-rotational parameter (($\epsilon_{bb} + \epsilon_{cc}$)/2 = 12.45 MHz) is compared to that of other monovalent calcium compounds and interpreted in terms of the proposed state distribution.