A SPECTROSCOPIC STUDY OF CaOCH₃ USING THE PUMP/PROBE MICROWAVE AND THE MOLECULAR BEAM/OPTICAL STARK TECHNIQUES

KEI-ICHI NAMIKI, J. SCOTT ROBINSON, AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287.

The Stark effect on the $\tilde{Q}_{22}(0,0.5)$ ($\nu = 17682.9251 \text{ cm}^{-1}$) and $\tilde{P}_{11}(0,1.5)$ ($\nu = 17682.1966 \text{ cm}^{-1}$) branch features of the (0,0) $B^2A_1 \rightarrow X^2A_1$ band system of calcium methoxide, CaOCH₃, was measured and analyzed to give the permanent electronic dipole moments, μ, of 1.58(8)D and 1.21(5)D for the X^2A_1 and B^2A_1 states, respectively. The dipole moments are compared with other monovalent calcium compounds and those predicted from a simple electrostatic model. Pure rotational transitions in the X^2A_1 state were recorded using the pump/probe microwave-optical double resonance technique. The proton magnetic hyperfine splitting pattern confirms that the symmetry of the ground electronic state is C_{3v}. The determined small negative value for the Fermi contact parameter ($a_F = -0.419 \text{ MHz}$) is interpreted in terms of spin polarization effects. The determined spin-rotational parameter ($\langle \epsilon_{66} + \epsilon_{cc} \rangle/2 = 12.45 \text{ MHz}$) is compared to that of other monovalent calcium compounds and interpreted in terms of the proposed state distribution.