ROTATIONAL SPECTROSCOPY AND MOLECULAR STRUCTURE OF $^{15}\mathrm{N}_2$ - $^{14}\mathrm{N}_2\mathrm{O}$

HELEN O. LEUNG, Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075-6407.

The rotational spectrum of $^{15}\mathrm{N}_2$ $-^{14}$ $\mathrm{N}_2\mathrm{O}$ has been recorded in the 7-19 GHz region using a pulsed molecular beam, Fourier transform microwave spectrometer. Both a- and b-type transitions have been observed. The analysis of the hyperfine structure due to the two $^{14}\mathrm{N}$ nuclei in the $\mathrm{N}_2\mathrm{O}$ subunit reveals that the energy levels are doubled, owing to a tunneling motion of the $^{15}\mathrm{N}_2$ subunit. The rotational constants support a planar, T-shaped structure, with $^{15}\mathrm{N}_2$ forming the leg of the T. This geometry is consistent with that obtained using infrared spectroscopy. a The nuclear quadrupole coupling constants of the two $^{14}\mathrm{N}$ nuclei indicate that the b-axis of the complex forms an angle between 10- 12° with the $\mathrm{N}_2\mathrm{O}$ axis.

^aR. W. Randall, T. D. Dyke, and B. J. Howard, Faraday Discuss. Chem. Soc. 86, 21 (1988).