ROTATIONAL SPECTROSCOPY AND MOLECULAR STRUCTURE OF $^{15}\text{N}_2-{^{14}}\text{N}_2\text{O}$

HELEN O. LEUNG, Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075-6407.

The rotational spectrum of $^{15}\text{N}_2-{^{14}}\text{N}_2\text{O}$ has been recorded in the 7-19 GHz region using a pulsed molecular beam, Fourier transform microwave spectrometer. Both a- and b-type transitions have been observed. The analysis of the hyperfine structure due to the two ^{14}N nuclei in the N_2O subunit reveals that the energy levels are doubled, owing to a tunneling motion of the $^{15}\text{N}_2$ subunit. The rotational constants support a planar, T-shaped structure, with $^{15}\text{N}_2$ forming the leg of the T. This geometry is consistent with that obtained using infrared spectroscopy. a The nuclear quadrupole coupling constants of the two ^{14}N nuclei indicate that the b-axis of the complex forms an angle between 10-12° with the N_2O axis.