H$_3^+$, the cornerstone molecule of interstellar chemistry, was first detected in interstellar space in 1996b in the dense molecular clouds GL2136 and W33A. We have now extended this ion’s diagnostic powers to the diffuse interstellar medium with the detection of H$_3^+$ along the line of sight to the visible star Cygnus OB2 No. 12c. Three rovibrational transitions in the 3.7 \textmu m region were observed using the CGS4 infrared spectrometer at the United Kingdom Infrared Telescope and the high-resolution Phoenix spectrometer at the Kitt Peak National Observatory.

We have developed a simple chemical model of interstellar chemistry which describes the abundance of H$_3^+$ in both diffuse and dense clouds. The application of this model to Cygnus OB2 No. 12 shows that this line of sight has H$_3^+$ number density $[\text{H}_3^+] \sim 4 \times 10^{-7}$ cm$^{-3}$, effective path length $L \sim 300$ pc, and hydrogen number density $[\text{H}] + 2[\text{H}_2] \sim 20$ cm$^{-3}$. The H$_3^+$ absorptions also provide an estimate of the effective kinetic temperature of the medium $T \sim 27$ K.

aSupported by the Fannie and John Hertz Foundation