ELECTRONIC SPECTROSCOPY OF MOLYBDENUM MONOCARBIDE

DALE J. BRUGH, National Institute of Standards and Technology, Optical Technology Division, Gaithersburg, MD 20899; TJ RONNINGEN and MICHAEL D. MORSE, University of Utah, Department of Chemistry, Salt Lake City, UT 84112.

In a continuing effort to understand the nature of the metal carbon bond in transition metal monocarbides we have undertaken the first spectroscopic investigation of MoC by resonant two-photon ionization spectroscopy. Molybdenum carbide was produced by laser vaporization of a Mo sample disk in a supersonic expansion of He and 3% CH₄. Using 6.42 eV photons for photoionization we have observed a number of transitions between 17 700 cm⁻¹ and 24 000 cm⁻¹. Twenty four of the observed bands have been studied at sufficient resolution (0.04 cm⁻¹) to allow the rotational structure of each transition to be resolved. An analysis of the isotope shifts has allowed a tentative identification of three band systems among the 24 observed transition. Given that the ground state of NbC^a is known to be $11\sigma^22\delta^1$, $^2\Delta_r$ and that of RuC^b is known to be $11\sigma^22\delta^4$, $^1\Sigma^+$, it seems likely that the addition of another electron on moving from NbC to MoC yields for a ground state the $\Omega = 0^+$ component of a $^3\Sigma^-$ term. This is consistent with the observation that every transition in this study originates from an $\Omega = 0$ state. The $X^3\Sigma^-$ rotational constant for the most abundant isotope, $^{98}Mo^{12}C$, has been determined to be 0.553640 \pm 0.000055 cm⁻¹. This corresponds to a ground state bond length of 1.687719 \pm 0.000084 Å.

^aB. Simard, P. I. Presunka, H. P. Loock, A. Berces, and O. Launila, submitted to J. Chem. Phys. (1997).

^bJ. Langenberg, R. S. Dabell, L. Shao, D. Dreessen, and M. D. Morse, in preparation.