THE PREDISSOCIATION MECHANISM FOR ${}^{2}\Sigma^{+}$ RYDBERG STATES OF CALCIUM MONOCHLORIDE

JASON O. CLEVENGER, NICOLE A. HARRIS, and ROBERT W. FIELD, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; JIAN LI, Department of Chemistry, Tsinghua University, Beijing, China 100084.

This talk summarizes experimental results from recent ion-dip spectroscopy studies of CaCl as well as previously unpublished opticaloptical-double-resonance work with specific regard to predissociation processes of ${}^{2}\Sigma^{+}$ Rydberg states in the low-n* (n* < 7, IP-E ~ 2500 cm⁻¹) region. A single repulsive state (assigned as ${}^{2}\Sigma^{+}$) was found to be responsible for all observed predissociations of ${}^{2}\Sigma^{+}$ Rydberg states. The n*-dependent internuclear distances of the intersections between Rydberg and repulsive ${}^{2}\Sigma^{+}$ states were determined through the use of trial-and-error Franck-Condon calculations. Values of the n*-scaled electronic matrix elements governing the Rydberg \leftrightarrow repulsive state interaction were obtained from the measured linewidths (.6 < Γ < 1.2 cm⁻¹) and computed Franck-Condon densities. With the assumption of a one-parameter form for the repulsive curve, $E(cm^{-1}) = \frac{C_{12}}{R^{12}} + D_e$, where C_{12} has the units Å¹²cm⁻¹ and $D_e = 33171$ cm⁻¹ for CaCl, the optimum value of C_{12} was found to be 2.354 × 10⁸Å¹²cm⁻¹.