INFRARED EMISSION STUDIES OF THE $A^3\Sigma^-$ - $X^3\Pi$ ELECTRONIC TRANSITION OF SiC

<u>M. N. DEO</u> and K. KAWAGUCHI, Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano, 384-1305, Japan.

The gas phase infrared emission spectrum of the $A^3\Sigma^- \cdot X^3\Pi$ electronic transition of SiC has been observed using Fourier transform spectrometer. The SiC radical was generated by a dc discharge in a flowing mixture of $(CH_3)_6Si_2$ and He. Three bands 1-0 (4577.8 cm⁻¹), 0-0 (3723.1 cm⁻¹) and 0-1 (2769.8 cm⁻¹) have been observed, out of these the last two were observed for the first time^{*a*}. Altogether more than 1100 transitions have been assigned and these data were simultaneously least squares fitted and obtained the molecular constants for SiC in the $A^3\Sigma^-$ and $X^3\Pi$ electronic states. The vibrational frequency ν_0 in the A state was determined to be 854.6994(7) cm⁻¹, which is close to the matrix result^{*b*} 854.2 cm⁻¹.

^a4577.8 cm⁻¹ band was first observed by Brazier et.al.[J. Chem. Phys., 91, 7384(1989)] and they identified it as 0-0 band.

^bM. Grutter, P. Freivogel and J. P Maier, J. Phys. Chem. A, 101, 275(1997)