CALCULATING H₂O STATES UP TO DISSOCIATION STATES USING PDVR3D

HAMSE Y. MUSSA and JONATHAN TENNYSON, Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, UK.

Even small chemically bound molecules have 10^5 or more bound states. Calculations of this size represent a grand challenge to conventional computers. We have parallelized DVR based program suite DVR3D(1) to give PDVR3D(2). The PDVR3D suite runs on the Cray T3D/T3E at Edinburgh University(U.K.), the IBM SP2 at Daresbury(U.K.) and on the Cray T3E at CINECA (Italy).

As a first application of PDVR3D, we are studying the water molecule using two newly available global potentials due to Varandas(3) and Ho and Rabitz(4). We have calculated the ro-vibrational levels of water up to dissociation limits for both potentials. Studies of bound and quasibound ro-vibrational states of H_3^+ , using a realistic global potential(5), are also being performed.

References:

[1] J.Tennyson, J.R.Henderson, N.F.Fulton, Computer. Phys. Comm., 86 (1995) 175-196.

- [2] H.Y. Mussa, J. Tennyson, C.J. Noble and R.J.Allan, Computer. Phys. Comm., 108 (1998) 29-37.
- [3] A.J.C. Varandas, J.Chem.Phys., 105 (1996) 9.
- [4]T.-S. Ho, T. Hollebeck, H. Rabitz., L.B. Harding, G. Schatz, J.Chem.Phys., 105 (1996) 10472.

[5] R.Prosmiti, O.L. Polyansky and J. Tennyson, Chem. Phys. Lett., 273 (1997) 107-114.