MILLIMETER-WAVE SPECTROSCOPY OF THE IRON CARBONYL RADICAL(FeCO) IN THE ν_2 BENDING VIBRATIONAL STATE

KEIICHI TANAKA, MITSUHIRO NAKAMURA, MITSUAKI SHIRASAKA and TAKEHIKO TANAKA,
Department of Chemistry, Faculty of Science, Kyushu University 33, Hakozaki, Higashiku, Fukuoka 812-8581, Japan, and Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.

The rotational spectrum of iron carbonyl radical FeCO in the ν_2 bending vibrational state of the ground $X^3\Sigma^-$ electronic state was observed in the millimeter-wave region. The radical was produced by a dc discharge of iron pentacarbonyl Fe(CO)$_5$. Seven rotational lines, split into sextet by the electron spin-spin interaction and Λ-type doubling, were identified in the frequency region of 154-254 GHz. Molecular constants derived, the rotational and centrifugal distortion constants, the spin-spin coupling constant $\gamma_0 = 679.37(291)$ GHz and the spin-rotation coupling constant $\gamma_0 = 679.37(291)$ MHz, are reasonably similar to those of the ground state $^3\Sigma^-$. Although the electronic state is $^3\Sigma^-$, a large spin-orbit coupling constant $A = 14.074(57)$ GHz was derived, indicating the vibronic coupling with the $^3\Pi$ electronic state located about 6500 cm$^{-1}$ above the ground state. From the Λ-type doubling, large interaction constants, $\alpha = -18.289(55)$ GHz, $p = -355.36(64)$ MHz, and $q = 9.5167(69)$ MHz, were determined, where the figures in parentheses are a standard error to be attached to the last digits.