COLOR-CENTER LASER SPECTRUM OF FLUOROBENZENE OBSERVED WITH THE PULSED SUPERSONIC JET EXPANSION TECHNIQUE

<u>M. ISHIGURO</u>, K. HARADA, K. TANAKA, and T. TANAKA, *Department of Chemistry, Faculty of Science, Kyushu University 33, Higashiku, Fukuoka 812-8581, Japan.*.

The infrared spectrum of fluorobenzene in the CH-stretch region (3040-3120 cm⁻¹) has been observed with a color-center laser spectrometer combined with a pulsed supersonic jet expandion technique. Due to the rotational as well as cooling in the jet, well resolved rovibrational lines were recorded. At least 5 fundamental bands (a₁; $\nu_2, \nu_{13}, \nu_{20a}$ b₁; ν_{7b}, ν_{20b}) are expected in this region according to the opto-thermal Raman conversion dye laser spectroscopy ^{*a*}. So far two parallel bands (ν_{13}, ν_{20a}) were analyzed to confirm the vibrational assignments given by the low-resolution spectroscopy.

The rotational constants and band origins were derived from the observed spectra assuming those for ground state to the microwave results ^b, ^c. The ν_{20a} band were found to be overlapped additionally with the two vibrational bands presumably caused by higher order Fermi interaction, whose inertia defects are small negative about $-0.5 \text{ amu}\text{Å}^2$. Their vibrational assignments are obscure yet, but the negative inatria defects imply that they include two or four quanta of low frequency out-of-plane vibrational modes such as $\nu_{11}(\omega = 248 \text{ cm}^{-1})$ and $\nu_{16b}(498 \text{ cm}^{-1})$.

^aM. Scotoni, S. Oss, L. Lubich, S. Furlani, and D. Bassi, J. Chem. Phys. <u>103</u>, 897 (1995)

^bM. Onda, H. Mukaida, and I. Yamaguchi, J. Mol. Spectrosc. <u>176</u>, 146 (1996)

^cL. Nygaard, I. Bojesen, T. Pedersen, and J. R. Andersen. J. Mol. Struct. <u>2</u>, 209 (1968)