A HIGH-RESOLUTION STUDY OF THE FOUR LOWEST FUNDAMENTAL BANDS AND ACCURATE DETERMINATION OF THE GROUND STATE CONSTANTS OF H$_3$Si35Cl

G. GRANER, S. BOSC, Y. HENNEQUIN, Laboratoire de Physique Moléculaire et Applications, CNRS, Bât. 350, Campus d’Orsay, F-91405 Orsay Cédex, France; H. BÜRGER, and S. BAILLEUX, Anorganische Chemie, FB 9, Universität-Gesamthochschule, D-42097 Wuppertal, Germany.

In order to determine the structure and force field of silyl chloride, the infrared spectra of several isotopomers were studied. After monoisotopic D$_3$Si35Cl (previous communication), we report here on the analysis of the monoisotopic H$_3$Si35Cl species. Here too, the two fundamental bands v_3 (543.968 cm$^{-1}$) and v_6 (663.736 cm$^{-1}$) are linked by a Coriolis resonance but its effects are less important than for D$_3$SiCl and especially than for the two nearly degenerate fundamental bands v_2 (947.982 cm$^{-1}$) and v_6 (950.657 cm$^{-1}$). The 'normal' ground state constants B_0, D^j_0, D^j_{JK}, H^j_0, H^j_{JK}, and P^j_{JK} were deduced from more than 6000 GSCD. As for the constants A_0 and D^0_0, they were obtained by the same method as for D$_3$Si35Cl. Calibration errors were detected and corrected by checking the closed loop between v_6, $(2v_6)^0$ and $(2v_6)^0 - v_6$. The values obtained are $A_0 = 2.84564$ cm$^{-1}$ and $D^0_0 = 2.54 \times 10^{-6}$ cm$^{-1}$ (provisional values). Upper state energies were also determined for $v_3 + v_6$, $v_2 + v_6$, $(2v_6)^0$, $(2v_6)^0$, $(2v_3)^0$, v_2, and $v_3 + v_2$. Some interesting features of the hot bands $v_3 + v_6 - v_3$ and $v_3 + v_6 - v_6$ will also be reported.