A HIGH-RESOLUTION STUDY OF THE FOUR LOWEST FUNDAMENTAL BANDS AND ACCURATE DETERMINATION OF THE GROUND STATE CONSTANTS OF $H_3Si^{37}Cl$

<u>G. GRANER</u>, S. BOSC, Y. HENNEQUIN, Laboratoire de Physique Moléculaire et Applications, CNRS, Bât. 350, Campus d'Orsay, F-91405 Orsay Cédex, France; H. BÜRGER, and S. BAILLEUX, Anorganische Chemie, FB 9, Universität-Gesamthochschule, D-42097 Wuppertal, Germany.

In order to determine the structure and force field of silyl chloride, the infrared spectra of several isotopomers were studied. After monoisotopic $D_3Si^{35}Cl$ (previous communication), we report here on the analysis of the monoisotopic $H_3Si^{37}Cl$ species. Here too, the two fundamental bands ν_3 (543.968cm⁻¹) and ν_6 (663.736 cm⁻¹) are linked by a Coriolis resonance but its effects are less important than for D_3SiCl and especially than for the two nearly degenerate fundamental bands ν_2 (947.982 cm⁻¹) and ν_5 (950.657 cm⁻¹). The 'normal' ground state constants B_0 , D_J^0 , D_{JK}^0 , H_J^0 , H_{JK}^0 , and D_{KJ}^0 were deduced from more than 6000 GSCD. As for the constants A_0 and D_K^0 , they were obtained by the same method as for $D_3Si^{35}Cl$. Calibration errors were detected and corrected by checking the closed loop between ν_6 , $(2\nu_6)^0$ and $(2\nu_6)^0 - \nu_6$. The values obtained are $A_0 = 2.84564$ cm⁻¹ and $D_K^0 = 2.54 \times 10^{-6}$ cm⁻¹ (provisional values). Upper state energies were also determined for ν_3 , ν_6 , ν_2 , ν_5 , $(2\nu_6)^0$, $2\nu_3$, and $\nu_3 + \nu_6$. Some interesting features of the hot bands $\nu_3 + \nu_6 - \nu_3$ and $\nu_3 + \nu_6 - \nu_6$ will also be reported.