A STUDY OF THE INTERMOLECULAR ν_5^1 VIBRATION IN OC-H 35 CI BASED ON NEAR INFRARED SPECTROSCOPY

R. GARNICA, A. I. MCINTOSH, Z. WANG, R. R. LUCCHESE, <u>J. W. BEVAN</u>, Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255; A. R. W. MCKELLAR, Steacie Institute, National Research Council, Ottawa, Ontario K1A OR6, Canada.

The near infrared $v_2+v_5^1$ combination bands of OC-H³⁵Cl and OC-H³⁷Cl have been recorded using a high frequency wavelength modulation diode laser supersonic jet spectrometer. In addition, the static gas phase spectra of the associated $v_2+v_5^1-v_5^1$ and $v_2+2v_5^1-2v_5^1$ hot bands in OC-H³⁵Cl have been recorded using Fourier transform infrared absorption spectroscopy. The combined results permit evaluation of rovibrational constants for the low frequency intermolecular bending vibration of the OC-H³⁵Cl isotopomer (in cm-1): $v_5^1 = 48.9953(2)$; $B(v_5^1) = 0.0565731(6)$, $Djv_5^1 = 1.906 \times 10^{-7}(6)$ and $qv_5^1 = 0.0001466(2)$.