EXPERIMENTAL DETERMINATION OF INFRARED TRANSITION DIPOLE MOMENTS FOR HNC FROM HERMAN-WALLIS EFFECT

<u>M. NEZU</u> and T. AMANO, *Institute for Astrophysics and Planetary Sciences, Ibaraki University, Mito 310, Japan;* K. KAWAGUCHI, *Nobeyama Radio Observatory, Nobeyama, Nagano 384-13, Japan.*

The transition dipole moments for the fundamental bands of HNC were obtained from analyses of Herman-Wallis effect on the absorption intensities. All the fundamental bands were measured using a Fourier transform infrared spectrometer(Bruker IFS 120HR) at Nobeyama Radio Observatory. A glow discharge in a mixture of CH₃CN(~ 50 mTorr), H₂(~ 150 mTorr), and Ar(~ 100 mTorr) was used for production of HNC. The spectra were recorded with resolution of 0.01 cm⁻¹ and the absorption path length was 24 m. The experimentally determined first order Herman-Wallis coefficients for the ν_1 and ν_3 bands, combined with the relative value of the transition dipole moments for the ν_1 and ν_3 bands derived from the relative intensity measurements, yielded the following values for the transition dipole moments (in Debye), using the expressions for Herman-Wallis coefficients given by Watson^{*a*},

 $R_1 = 0.194(13), \quad R_2 = -0.886(13), \quad R_3 = -0.169(11).$

These values are considerably larger than the corresponding values for HCN^b and are in reasonable agreement with *ab initio* values^{cd}.

^aJ. K. G. Watson, J. Mol.Spectrosc. 125, 428(1987)

^bA. G. Maki et al, J. Mol.Spectrosc. 174, 365(1995)

^cP. Botschwina *et al*, Chem. Phys. 190, 345(1995)

^dT. J. Lee and A. P. Rendell, Chem. Phys. Lett. 177, 491(1991)