REASSIGNMENT OF THE 11537 cm⁻¹ BAND OF HYDROGEN FLORIDE DIMER AND OBSERVATION OF THE INTERMOLECULAR COMBINATION MODE $3\nu_1 + \nu_4$

<u>CHENG-CHI CHUANG</u>, SUSY N. TSANG and WILLIAM KLEMPERER, Department of Chemistry, Harvard University, Cambridge, MA 02138; HUAN-CHEN CHANG, Institute of Atomic and Molecular Sciences, Academica Sinica, P.O.Box 23-166, Taipei, Taiwan 10764, Republic of China.

We report a high resolution re-examination of K=1 subband of $3\nu_2 + \nu_6$ and the $3\nu_1 + \nu_4$ (K=0) combination mode of (HF)₂ by intracavity laser induced fluorescence. The fluorescence is monitored with a germanium detector which collects only first overtone emission (2 \rightarrow 0) of HF fragments. The band centered at 11537 cm⁻¹ is shown to be K=1 of $3\nu_2 + \nu_6$ [previously assigned to K=1 of $\nu_1 + 2\nu_2$, *J. Chem. Phys.* **100**, 1 (1994)]. Hydrogen interchange tunneling is almost completely quenched ($\Delta\nu_t$ =0.6 GHz). Vibrational predissociation rate is rapid (4.5 GHz) but half that of 10 GHz observed in $3\nu_2$. The combination mode $3\nu_1 + \nu_4$ is recorded with band origins of 11402.889(4) and 11402.868(8) cm⁻¹ and rotational constants of 0.21639(17) and 0.21704(15) cm⁻¹ for the two tunneling components A⁺ and B⁺, respectively. The frequency of this intermolecular vibration, ν_4 , upon $3\nu_1$ excitation is 129.36 cm⁻¹, quite similar to that at the fundamental, suggesting only a minor dependence of the hydrogen bond vibration on the free-HF bond length. The predissociation linewidth for $3\nu_1 + \nu_4$ mode is 2.5(2) GHz, which is one order of magnitude larger than the 0.24(2) GHz of the $3\nu_1$ state. The coupling of this state to the dark state of $3\nu_2 + \nu_4 + \nu_5$ is suggested for the origin of the observed linewidth increase.