MOLECULAR BEAM INFRARED SPECTRUM OF THE HF STRETCHING FUNDAMENTAL BAND OF THE HF-BF$_3$ COMPLEX

K. NAUTA and R.E. MILLER, Dept. of Chemistry, University of North Carolina, Chapel Hill, NC 27599; G.T. FRASER and W.J. LAFFERTY, Optical Technology Division, NIST, Gaithersburg, MD 20899.

The microwave spectrum of the antihydrogen bonded HF-BF$_3$ complex has recently been reported by Philips et al. The spectrum reveals a near symmetric F-BF$_3$ heavy atom frame with the proton slightly off axis, and a small barrier to internal rotation of the H atom against the F atoms. Here, we have investigated the H-F stretching fundamental band of this complex using a molecular beam optothermal spectrometer and a color-center laser. Two subbands are expected: a parallel band with $\Delta m = 0$ selection rules and a perpendicular band with $\Delta m = \pm 1$ selection rules. At present, only the perpendicular band has been observed. This band has the appearance of a perpendicular band of a symmetric rotor, but with anomalously strong TR transitions and weak PP transitions. Upper state constants are obtained fixing the ground-state constants to the microwave-determined values. The band has a large positive ζ Coriolis constant, from which an estimate of the barrier to internal rotation can be made. A search is presently underway to locate the expected weaker $\Delta m=0$ parallel component.
