THE MICROWAVE ROTATIONAL SPECTRUM OF THE Ne-N₂O VAN DER WAALS COMPLEX

MWANIKI S. NGARI and WOLFGANG JÄGER, Department of Chemistry, University of Alberta, Edmonton, AB, Canada, T6G 2G2.

Rotational spectra of six isotopomers of the van der Waals dimer Ne-N₂O were measured in the frequency range from 5 to 18 GHz using a pulsed beam cavity Fourier transform spectrometer. The spectra indicate that the complex is a prolate near symmetric rotor with a T-shaped structure. The Ne atom is on average closer to the O atom than to the terminal N atom. Both a- and b-type transitions were measured. The nuclear quadrupole hyperfine pattern due to two 14N nuclei were resolved. Rotational and centrifugal distortion constants were determined, as well as the nuclear quadrupole coupling constants $\chi_{aa}(1)$, $\chi_{bb}(1)$, $\chi_{aa}(2)$, $\chi_{bb}(2)$. Effective values for the distance from the center of mass of the N₂O subunit to the Ne atom, and for the angle between this distance and the N₂O axis were obtained.