INFRARED EMISSION SPECTRUM OF DBO

<u>PINA COLARUSSO</u>, KEQING ZHANG, PETER BERNATH, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; YOSHIYUKI KAWASHIMA, Department of Chemical Technology, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-02, Japan; and EIZI HIROTA, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-01, Japan.

We generated the transient molecule DBO by reacting deuterium with the parent molecule, HBO, at temperatures above 800°C in a ceramic tube furnace. Infrared emission spectra were recorded with a Fourier transform spectrometer at a resolution of 0.01 cm⁻¹ from 350 to 3600 cm⁻¹. We observed the three fundamental vibrational bands as well as various hot and combination bands. A strong Coriolis interaction was detected between the ν_1 and $\nu_2 + \nu_3$ energy levels. The high-resolution infrared data for DBO will be combined with previous results^{*a*,^{*b*} to yield a thorough analysis of the ground electronic state.}

^aY. Kawashima et al., J. Molec. Spectrosc. 133, 116-127 (1989) and 44th Symp. Molec. Spectrosc., Columbus, (1989).

^bP. Colarusso et al., 51st Sympos. on Molec. Spectrosc., Columbus, (1996).