AB INITIO STUDY OF THE TRICHLORINE RADICAL, Cl3

<u>A. L. KALEDIN</u>, W. G. LAWRENCE, M. C. HEAVEN, Q. CUI, J. E. STEVENS, and K. MOROKUMA, *Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322, U.S.A.*

We report a rigorous *ab initio* study of the ground and low-lying excited-state potential energy surfaces (PES) of the Cl₃ radical at CASSCF, CASPT2, and internally contracted (IC) MRSDCI levels of theory with the Dunning's *avdz* and *avtz* basis sets. (There is a previous study ^a which examined only restricted areas of the PES.) The ground state PES has two true minima, both of which are van der Waals complexes between Cl and Cl₂. The linear asymmetric minimum is of ²II symmetry, and the bent asymmetric minimum is ²A'. At the ICMRSDCI/*avdz* level of theory with counterpoise correction for energy, the Jacobi coordinates for the linear minimum are: \mathbf{r} =3.90 au, \mathbf{R} =8.47 au, $\mathbf{D}_e(Cl_2(X)-Cl)=250$ cm⁻¹, and those of the bent minimum are: \mathbf{r} =3.90 au, \mathbf{R} =6.85 au, γ =66.47°, $\mathbf{D}_e(Cl_2(X)-Cl)=230$ cm⁻¹. Addition of spin-orbit interaction as a perturbation predicts that the global minimum is linear ² $\Pi_{3/2}$ stabilized by 280 cm⁻¹ whereas bent ² $E_{1/2}$ is stabilized by only 136 cm⁻¹.

Excited valence states exhibit only one strongly bound minimum: ${}^{2}\Pi_{g}$ with the bond length of 4.67 au at the ICMRSDCI/*avdz* level of theory. This state is located 1.1 eV above the van der Waals minima and exhibits a strong (1 au) dipole transition moment to the below-lying ${}^{2}\Pi_{u}$ state. It is bound by approximately 5,000 cm⁻¹ with respect to Cl₂(${}^{3}\Pi_{u}$)-Cl asymptote. This minimum is due to the avoided crossing between two valence bond structures: Cl-Cl Cl and Cl Cl-Cl.

Attempts are made in connection to previous experimental and *ab initio* studies to explain the on-going hypothesis of a long-lived ground state intermediate formed by the reaction: $Cl_2 + Cl \Leftrightarrow Cl_3$. According to our ground state calculations this postulate is strongly undermined. In addition, we attempt to explain a 470 nm long-lived laser-induced fluorescence observed after isolating Cl and Cl₂ in Ar matrix. Our calculations do not show any evidence that the trichlorine radical is responsible for this fluorescence. However, the possibilities of Cl_3 playing some role in this process are examined.

^aA. B. Sannigrahi and Sigrid D. Peyerimhoff, Int. J. Quantum Chem. **30**, 413-420 (1986).