OBSERVATION OF THE CH STRETCH BAND OF CH$_3^+$

E. T. WHITE, J. TANG, and T. OKA, Department of Chemistry, The University of Chicago, Chicago, IL 60637.

Ab initio calculations predict that protonated methane, CH$_3^+$, has three low energy structures that are practically equal in energy and that barriers separating their 120 equivalent minima are lowa. Thus CH$_3^+$ provides a new prototype of spectroscopic specimen in which the five equivalent protons are attached to the central carbon atomb. We have observed, using our difference frequency spectrometer and the velocity modulation technique, a weak but rich spectrum of a carbocation containing one carbon. We believe they are transitions of CH$_3^+$ due to the formally forbidden CH stretch band based on their plasma chemical behavior and agreement with the conclusion of predissociation spectroscopy of CH$_4^{2+}$.c. A preliminary observational result will be reported.