LASER EXCITED METASTABLE SPECTROSCOPY OF C₂H₂

<u>KEVIN L. CUNNINGHAM</u>, STEPHEN DRUCKER, and ROBERT W. FIELD, *Department of Chemistry*, *Massachusetts Institute of Technology, Cambridge MA 02139-4307*; SUSAN J. HUMPHREY, CHRISTO-PHER G. MORGAN, and ALEC M. WODTKE, *Department of Chemistry, University of California at Santa Barbara, Santa Barbara CA 93106*.

Triplet states have been detected near the $3\nu_3$ vibrational level of the S₁ electronic surface of C₂H₂ using the highly selective technique of Laser Excited Metastable (LEM) spectroscopy. LEM detects metastable molecules through the detection of an Auger electron emitted when the molecule impacts a metal surface. A supersonic molecular beam of C₂H₂ was crossed with a laser beam which excites $\pi^* - \pi$ transitions to metastable states. The molecules then travel ~100 μ s before impacting a Au surface. During the collision, an electron from the conduction band of the metal may fall into the open π bonding orbital of C₂H₂. The electron in the π^* orbital is then ejected and detected. To be detected, the excited state must have a minimum lifetime on the order of 100 μ s and must have electronic excitation energy that exceeds the work function of the Au surface ($\phi = 5.1 \text{ eV}$). The LEM and LIF spectra were recorded simultaneously for a number of bands in the \tilde{A} - \tilde{X} band system, including $3\nu_3$. LEM and LIF offer complementary information. LIF detects short-lived states which are of predominant singlet character; LEM detects long-lived states which are predominantly triplet. The spectra show a number of interesting features necessary to understanding the mechanism of singlet-triplet coupling in C₂H₂. Despite the low vibrational density of T₃ states near $3\nu_3$, the results show that a single vibrational level of the T₃ surface is strongly coupled to $3\nu_3$ and to the much denser manifold of T₁ and T₂ vibrational states.