FAR-INFRARED LASER STARK SPECTROSCOPY OF ¹³CD₃OD

M. JACKSON, Department of Physics, New Mexico State University, Las Cruces, NM 88003; G. R. SUD-HAKARAN, E. GANSEN, Department of Physics, University of Wisconsin, La Crosse, WI 54601; I. MUKHOPADHYAY, Laser Programme, Centre for Advanced Technology, Indore, India, 452 013; and R. M. LEES, Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3.

The Stark spectrum of $^{13}\text{CD}_3\text{OD}$ has been investigated in the far-infrared region using the HCN and DCN lasers. The spectra were taken at room temperature for both parallel and perpendicular polarizations using electric fields up to $60~000~\frac{V}{cm}$. An extensive series of absorption lines observed with the 337 μm line has been assigned to the J=9 to 15 members of the $K=5\leftarrow4~E_2$ Q-branch in the $v_t=1$ torsional state^a. Further analysis of this Q-branch multiplet has yielded the branch origin, $v_0=882~847.7$ MHz, and expansion coefficients, a=93.6785 MHz and b=-0.2689 MHz. An R-branch transition observed at 337 μ m has been assigned as $J_K=9_7\leftarrow8_6~A~v_t=0$. Two families of resonances observed with the 195 μ m line have been tentatively identified as members of the Q-branch multiplet $J_K=J_7\leftarrow J_8~E_2~v_t=2$ for J=11 and 12. Zero-field frequencies for all assigned transitions are given with improved accuracy over those calculated from the available molecular constants.

^aM. Jackson, G. R. Sudhakaran, E. Gansen, J. Mol. Spectrosc., 176, 439-441 (1996).