AN OPTICAL-OPTICAL DOUBLE-RESONANCE SPECTROSCOPIC STUDY OF FOUR ION-PAIR STATES OF CLF AND IDENTIFICATION OF THE CLF(A) VALENCE STATE

<u>V. A. ALEKSEEV^a</u> and D. W. SETSER, *Chemistry Department, Kansas State University, Manhattan, KS* 66506.

Four ion-pair states of CIF, $E 0^+({}^{3}P_2)$, $f 0^+({}^{3}P_0)$, $\beta 1({}^{3}P_2)$ and $G 1({}^{3}P_1)$, have been identified by sequental excitation via the $B {}^{3}\Pi_{0+}$ valence state. Excitation spectra and fluorescence spectra have been acquired, which permit the assignment of vibrational energies and rotational constants to 31 levels. These four ion-pair states exhibit complex homogeneous and heterogeneous interactions and neither the vibrational nor rotational constants are regular with increasing vibrational quantum number. The vibrational and rotational constants of the $A {}^{3}\Pi_{1}$ state were identified from the low resolution $\beta - A$ emission spectra and the dissociation limits of CIF ($B {}^{3}\Pi_{0+}$) and CIF($A {}^{3}\Pi_{1}$) are discussed. The dissociation energy of CIF (X) is confirmed to be 21110 cm⁻¹. Some qualitative information also was obtained about the $D' 2({}^{3}P_2)$ and $A' {}^{3}\Pi_2$ states.

^aPermanent address: Photonics Department, Institute of Physics, St.Petersburg University, 198904 St. Petersburg, RUSSIA