ZERO ELECTRON KINETIC ENERGY PULSED FIELD IONIZATION (ZEKE) SPECTROSCOPY OF CdCH₃ AND $ZnCH_3$

<u>SERGEY I. PANOV</u>, DAVID E. POWERS, TIMOTHY A. BARCKHOLTZ, AND TERRY A. MILLER, *Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, Columbus, Ohio* 43210.

The two-color (1 + 1') REMPI and ZEKE spectra of the CdCH₃ and ZnCH₃ radicals are reported for the first time. Based upon the observed intensities in the ZEKE spectrum for CdCH₃, via transitions to different vibrational levels of the $\tilde{A}^2 E$ intermediate state, the band previously assigned as the upper spin-orbit component of the vibrationless level of the $\tilde{A}^2 E \leftarrow \tilde{X}^2 A_1$ transition in neutral CdCH₃ is reassigned. This band which has now been observed in both LIF and REMPI experiments, is reassigned as the 6_0^1 band of the lower spin-orbit component, ${}^2E_{1/2}$. The ZEKE spectra, taken via various intermediate rovibronic levels, are used to reveal rovibrational structure of the CdCH₃ and ZnCH₃ cations and to measure the adiabatic ionization energies for both radicals. These radicals belong to the C_{3v} point group and are therefore subject to a Jahn-Teller interaction in the \tilde{A} state, which allows a broader range of K' states to be accessible in the LIF and REMPI experiments thereby enabling access to a broader range of K states for the ions in the ZEKE experiment. The resolved K structure in the level with one quanta of ν_6 excitation in the ion enables estimates of both the rotational constant A and the coriolis coupling constant $a\zeta_t$ to be made. Vibrational frequencies and assignments for the ions will be reported.