LINE SHIFT AND LINE BROADENING IN FUNDAMENTAL BANDS OF DIFFERENT ISOTOPOMERES OF CAR-BON MONOXIDE

<u>S. VOIGT</u>, J. P. BURROWS, J. ORPHAL, Institute of Environmental Physics, University of Bremen, P. O. Box 330440, 28334 Bremen, Germany; A. KISSEL, H.-D. KRONFELDT, O. KURTZ, I. MEUSEL, and B. SUMPF, Institute of Optics, Technical University Berlin, Sekr. PN 0-1, Hardenbergstr. 36, 10623 Berlin, Germany.

In this paper we present results concerning line shift and line broadening in the fundamental band of different isotopomeres of carbon monoxide near 2058 cm⁻¹. The study includes lines of ¹²C¹⁶O and for the first time lines of ¹³C¹⁶O, ¹²C¹⁸O, ¹³C¹⁸O, and ¹³C¹⁷O perturbed by N₂, O₂, H₂, D₂, He, Ne, Ar, Kr, and Xe. The results for Kr, H₂, and D₂ represent the first experimental data for the (1 \leftarrow 0) band of CO. For all perturbers except helium all line-shift coefficients are negative. Within the experimental uncertainties the data show no significant dependence on the isotopomere. As known for ¹²C¹⁶O for collisions with noble gases the absolute value of the line-shift coefficients increase with increasing mass of the perturber. Lines from R-branches show smaller shift coefficients compared to P-branch lines. Our absolute values for the line-shift coefficients for the (1 \leftarrow 0) band confirm the trend that the effect for this band is smaller compared to the (2 \leftarrow 0) band as known from former experimental data by Bouanich *et al.^a*. The nitrogen broadening will be compared to previous measurements for ¹³C¹⁶O by Voigt *et al.^b*.

^aJ.-P. Bouanich, D. Bermejo, J. L. Domenech, R. Z. Martinez, J. Mol. Spectrosc. 179, 22 (1996)

^bS. Voigt, S. Dreher, J. Orphal, J. P. Burrows, J. Mol. Spectrosc. 180, 359 (1996)