PARTIAL PHOTODISSOCIATION CROSS SECTIONS FOR O2 IN THE 1205 Å REGION

<u>S. T. GIBSON</u> and B. R. LEWIS, *Research School of Physical Sciences and Engineering The Australian National University, Canberra, ACT 0200, Australia.*

Measurements of the photoabsorption cross section of O₂ and the partial photodissociation cross section yielding O(¹D) have been made over the wavelength region of the Tanaka second band, (1,0) $E^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-}$.^{*a*} Photodissociation in this wavelength region predominantly results in the atomic species O(¹D) + O(³P), from predissociation via the $B^{3}\Sigma_{u}^{-}$ electronic state.^{*b*}

We have found a residual component of the cross section which does not yield $O(^{1}D)$ and therefore arises from a different path to dissociation. The origin of this component is inferred from a coupled-channel Schrödinger equation (CSE) model, involving a manifold of electronic states and interactions previously used to explain experimental predissociation linewidths of the $np\pi_{u} {}^{3}\Sigma_{u}^{+}$ Rydberg states.^c The CSE calculations give results consistent with the measured branching ratio into the $O({}^{1}D)$ and $O({}^{3}P)$ dissociation channels. The residual cross section is identified as arising from the $(4, 0) 3p\pi_{u} D^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{g}^{-}$ band.^d This band is known to interfere strongly with the second band.^e

We conclude that, whereas the $np\pi_u \, {}^{3}\Sigma_{u}^{-}$ Rydberg states dissociate entirely into $O({}^{1}D) + O({}^{3}P)$ due to a strong Rydberg-valence interaction, the $3p\pi_u \, {}^{3}\Sigma_{u}^{+}$ Rydberg state dissociates via two pathways, involving direct and indirect predissociation. The direct predissociation occurs from Rydberg-valence mixing of the ${}^{3}\Sigma_{u}^{+}$ states, with the electrostatic interaction an order of magnitude smaller than for the ${}^{3}\Sigma_{u}^{-}$ states, resulting in only $O({}^{3}P)$ products. Indirect predissociation arises from a spin-orbit interaction between the $3p\pi_u$ Rydberg ${}^{3}\Sigma_{u}^{+}$ and ${}^{3}\Sigma_{u}^{-}$ states, yielding $O({}^{1}D)$. This interaction also provides the intensity of the $(4,0)D \, {}^{3}\Sigma_{u}^{+} - X \, {}^{3}\Sigma_{g}^{-}$ band.

^{*a*} The mixed Rydberg-valence E electronic state is also labelled B' by some authors.

^bL. C. Lee, T. G. Slanger, G. Black, and R. L. Sharpless, J. Chem. Phys. 67, 5602 (1977).

^cS. S. Banerjee, Ph.D. Thesis, The Australian National University (1996).

^dThe D electronic state also labelled β by some authors.

^eB. R. Lewis, S. T. Gibson, M. Emami, and J. H. Carver, J. Quant. Spectrosc. Radiat. Transfer 40, 469 (1988).