IDENTIFICATION OF THE ${}^{3}\Sigma_{u}^{-}$ AND ${}^{3}\Pi_{u}$ RYDBERG STATES OF O_{2} BY DETECTING $O({}^{1}D)$

<u>J. B. NEE</u> AND P. C. LEE, *DEPARTMENT OF PHYSICS AND CHEMISTRY, NATIONAL CENTRAL UNI-VERSITY, CHUNG-LI, TAIWAN, 32054, ROC.*

The excited states of O_2 in 100-135 nm region consists of many Rydberg states which are still not well understood. We have investigated the excited states of O_2 dissociated into $O({}^1D)+O({}^3P)$. The experiment was conducted in a gas cell using the synchrotron radiation as the excitation source. $O({}^1D)$ was detected by the infrared emission at 762 nm produced from the $O_2(b^1\Sigma_g^+)$ formed by the energy transfer process from $O({}^1D)$ to O_2 . A spectrum between 105 and 130 nm for producing $O({}^1D)$ was obtained, which revealed the vibrational progression of the $n^3\Sigma_u^-$ states for n=2 to 4. By comparing with the absorption spectrum, the ${}^3\Pi_u$ state correlated with $O({}^3P)+O({}^3P)$ was also obtained.