LASER-INDUCED PHOSPHORESCENCE OF SO_2 IN SOLID NEON : DIRECT OBSERVATION OF THE $b\ ^3A_2$ STATE

YUAN-PERN LEE, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043; A. J. MERER, Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, B. C., Canada V67 1Z1.

Dispersed phosphorescence spectra of the transition a 3B_1 - X 1A_1 of ${}^{18}\text{O}$ -labeled SO₂ in solid Ne were recorded in the spectral region 388-478 nm during laser excitation. As zero-phonon lines are well resolved, we were able to identify all three vibrational modes of the X 1A_1 state, and to monitor emission from a specific isotopomer (in particular ${}^{16}\text{OS}^{18}\text{O}$) to obtain its corresponding excitation spectra. The vibronic patterns of excitation spectra of $S^{16}\text{O}_2$ and $S^{18}\text{O}_2$ in the spectral range 351-388 nm are similar to those observed in the gaseous phase, with severely perturbed lines above a 3B_1 (110) at 27005 cm $^{-1}$. New lines in two groups were observed for ${}^{16}\text{OS}^{18}\text{O}$; they are identified as lines associated with the ν_3 of a 3B_1 and of b 3A_2 . These observations enable us to report ν_3 = 922 cm $^{-1}$ for a 3B_1 , ν_2 = 315 and ν_1 = 771 cm $^{-1}$ for b 3A_2 , and a false origin at 26653 cm $^{-1}$ for the b 3A_2 (001) - X 1A_1 (000) transition of ${}^{16}\text{OS}^{18}\text{O}$.