INFRARED-ULTRAVIOLET DOUBLE RESONANCE SPECTROSCOPY OF ACETYLENE: DYNAMICAL SYMMETRY BREAKING IN THE $4\nu_{CH}$ ROVIBRATIONAL MANIFOLD AT 12700 cm$^{-1}$

MARK A. PAYNE, ANGELA P. MILCE, MICHAEL J. FROST and BRIAN J. ORR, School of Chemistry and Centre for Lasers and Applications, Macquarie University, Sydney, NSW, Australia 2109.

Time-resolved fluorescence-detected infrared-ultraviolet optical double resonance (IR-UV DR) experiments have been performed with a Raman-shifted dye laser preparing gas-phase C$_2$H$_2$ molecules in the $"4\nu_{CH}"$ region followed by laser-induced fluorescence (LIF) probing in the $S_1 \leftarrow S_0$ vibronic band system. Unusual symmetry-breaking energy transfer has been observed, induced (at least in part) by collisions.a This takes the form of odd-numbered changes of the rotational quantum number J, despite the fact that intramolecular transfer between the ortho and para nuclear-spin modifications of such a molecule is usually forbidden.

The selection rules for IR-UV DR spectra determine that the final vibronic levels should be of gerade symmetry. UV spectra are obtained by IR excitation of particular rotational levels of the (10300)0 vibrational eigenstate that terminate in ungerade vibronic levels. Odd-numbered changes of J are also observed in these spectra.

We have verified that the mechanism is an intramolecular process. One possibility is collision-induced dynamical symmetry breaking involving transitions between "$+"$ and "$-"$ local-mode states which spoil the g/u symmetry. We also consider whether a/s nuclear-spin interchange symmetry can be involved.a