ROTATIONAL ANALYSIS OF THE LASER INDUCED FLUORESCENCE EXCITATION SPECTRUM OF JET-COOLED CF$_3$O AND CF$_3$S

MIN-CHIEH YANG, J. M. WILLIAMSON, AND TERRY A. MILLER, Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, Columbus, OH 43210.

The high resolution, rotationally resolved laser induced fluorescence spectra for the $\tilde{A}^2 A_1 \leftrightarrow \tilde{X}^2 E$ transition of CF$_3$O and CF$_3$S were recorded. The \tilde{A} electronic state symmetric vibrational bands 0^0_0 and 3^0_0 and the asymmetric bands 5^1_0 and 6^1_0 were analyzed for CF$_3$O, while for CF$_3$S the symmetric bands 0^0_0, 1^0_0, 2^0_0 and 3^0_0, as well as the asymmetric bands 6_1^1, 3_0^1, 5_1^1, and 3_0^0 were analyzed. The results of the analysis show that the ground states of both CF$_3$O and CF$_3$S have C_{3v} symmetry which is consistent with a dynamic Jahn-Teller effect in these radicals. In the asymmetric 5_1^1 band of CF$_3$O, both perpendicular and parallel type transitions were observed while for the other asymmetric bands, only perpendicular type transitions were observed. The molecular parameters and the details of the analysis of all these bands will be presented.