HIGH RESOLUTION INFRARED DIODE LASER SPECTROSCOPY OF $X^2\Pi$ CBr

ANDREW J. MARR and TREVOR J. SEARS, Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000; PAUL B. DAVIES, University of Cambridge, Lensfield Road, Cambridge, United Kingdom CB2 1EW.

The infrared spectrum of the $X^2\Pi$ state of CBr from 680 - 750 cm$^{-1}$ has been measured using diode laser absorption spectroscopy. The CBr radicals were produced by 193 nm excimer photolysis of bromoform. Transitions belonging to the $v = 1 \leftarrow 0$, $2 \leftarrow 1$, $3 \leftarrow 2$ and $4 \leftarrow 3$ bands of both isotopomers, 79Br and 81Br have been identified. Employing $\alpha_{\text{calc}}(r)$ matrix elements, spectroscopic parameters were obtained from a least squares fit where the transition frequencies of both isotopomers were fitted simultaneously. The results were used to obtain a Rydberg-Klein-Rees (RKR) potential. Additionally, the kinetics of the CBr + O$_2$ reaction were investigated. This is the first recording of vibrational spectra of CBr.

Acknowledgements: This work was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-76CH00016 with the U.S. Department of Energy and support by its Division of Chemical Sciences, Office of Basic Energy Sciences. Support was also provided by a NATO Collaborative Research Grant, No. CRG 940066.