ANALYSIS OF PERTURBATIONS OBSERVED IN THE FT SPECTRA OF CuCl₂

<u>A. YIANNOPOULOU</u>, A. J. ROSS, P. CROZET, Laboratoire de Spectrométrie Ionique et Moléculaire, CNRS et Université Lyon-I (UMR 5579), Campus la Doua, 69622 Villeurbanne Cedex, France; and J. M. BROWN, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, England.

Abnormally large e-f separations have been observed in the $(v_1, 0, v_3)$ levels of the ground $X^2 \Pi_{g(3/2)}$ state of CuCl₂ about 2500 cm⁻¹ above the lowest vibrational level (0,0,0). The largest splittings are accompanied by extra lines in the dispersed fluorescence spectra. Some of the extra lines have resolvable Cu hyperfine structure; they are assigned as transitions to levels which result from mixing essentially between ${}^2\Pi_{g(1/2)}$ and a nearby ${}^2\Sigma_g$ state. We have used an effective Hamiltonian to model the ${}^2\Pi \sim {}^2\Sigma$ interaction and derived molecular constants for the unknown ${}^2\Sigma$ state

We have used an effective Hamiltonian to model the ${}^{2}\Pi \sim {}^{2}\Sigma$ interaction and derived molecular constants for the unknown ${}^{2}\Sigma$ state using a non-linear least-squares fitting routine. Taking an arbitrary value of the spin-orbit parameter A_{II} of -300 cm⁻¹, we estimate the ${}^{2}\Sigma$ state to lie around 3000 cm⁻¹ above the (0,0,0) level of the X² $\Pi_{g(3/2)}$ ground state.