PRESSURE BROADENING IN THE ¹³C¹⁶O 2–0 BAND

<u>S. VOIGT</u>, S. DREHER, J. ORPHAL, AND J. P. BURROWS, *Institute of Environmental Physics, University of Bremen, PO Box 330440, D-28334 Bremen, Germany.*

N₂ induced pressure broadening in the ¹³C¹⁶O 2–0 band around 4167 cm⁻¹ was investigated using Fourier Transform Spectroscopy. The spectra were recorded with a sample of 99 % isotopically pure ¹³CO in a White-type absorption cell at a resolution of 0.005 cm⁻¹. Voigt profiles convolved with the FTS apparatus function were fitted to the observed lineshapes^{*a*}, and Lorentzian HWHM were determined as function of N₂ pressure. Pressure broadening coefficients for *m* between –33 and +34 were obtained with uncertainties of 5.8 %.^{*b*}. The results are compared to N₂ broadening coefficients obtained from simultaneous measurements in the 2–0 band of ¹²C¹⁶O. While the latter values agree well with those published earlier, those of ¹³C¹⁶O are systematically lower by 5–7 % compared to ¹²C¹⁶O. This indicates that in spectroscopic databases the pressure broadening of ¹³C¹⁶O is significantly overestimated. This is most important since recent work^{*c*} shows that the ¹³CO/¹²CO mixing ratio is an indicator of stratospheric O₃ depletion chemistry.

^aK. Chance, Smithsonian Center for Astrophysics, Cambridge, USA, personal communication (1995).

^bS. Voigt et al., J. Mol. Spectrosc. 180, 359 (1996).

^cC. A. Brenninkmeijer et al., Geophys. Res. Lett. 23 (16), 2125 (1996).