PRESSURE BROADENING IN THE 13C16O 2–0 BAND

S. VOIGT, S. DREHER, J. ORPHAL, AND J. P. BURROWS, Institute of Environmental Physics, University of Bremen, PO Box 330440, D-28334 Bremen, Germany.

N_2 induced pressure broadening in the 13C16O 2–0 band around 4167 cm$^{-1}$ was investigated using Fourier Transform Spectroscopy. The spectra were recorded with a sample of 99% isotopically pure 13CO in a White-type absorption cell at a resolution of 0.005 cm$^{-1}$. Voigt profiles convolved with the FTS apparatus function were fitted to the observed lineshapesa, and Lorentzian HWHM were determined as function of N_2 pressure. Pressure broadening coefficients for m between -33 and $+34$ were obtained with uncertainties of 5.8%.b. The results are compared to N_2 broadening coefficients obtained from simultaneous measurements in the 2–0 band of 12C16O. While the latter values agree well with those published earlier, those of 13C16O are systematically lower by 5–7% compared to 12C16O. This indicates that in spectroscopic databases the pressure broadening of 13C16O is significantly overestimated. This is most important since recent workc shows that the 13CO/12CO mixing ratio is an indicator of stratospheric O$_3$ depletion chemistry.

cC. A. Brenninkmeijer et al., Geophys. Res. Lett. 23 (16), 2125 (1996).