THE HIGH-RESOLUTION INFRARED SPECTRUM OF DIBORANE

R.L. SAMS, T. BLAKE, AND S.W. SHARPE, *Pacific Northwest National Laboratory, PO Box 999, Battelle Blvd. Richland, WA 99352*; J.-M. FLAUD, *Lab. Photophysique Moleculaire, CNRS, Universite Paris-Sud, Bat. 210, 91405 ORSAY, Cedex, France; W.J. LAFFERTY, Optical Physics Division, NIST, Gaithersburg, MD 20899 and Instituto de Estructura de la Materia, C.S.I.C., Serrano 121, 28006 Madrid, Spain..*

We are in the process of recording and analyzing all of the infrared active bands of B_2H_6 , the simplest of the hydrogen-bridged borane compounds, with the goal of determining the frequencies of the IR forbidden modes in this very symmetric (D_{2h}) molecule by means of anharmonic interactions. The spectra were obtained on a Bruker 120HR FT spectrometer with a spectral resolution of 0.002 cm⁻¹. The sample contained boron in natural abundance (~80% ¹¹B; 20% ¹⁰B) and, therefore, the abundance of ¹¹B₂H₆, ¹⁰B¹¹BH₆ and ¹¹B₂H₆ was 64%, 32% and 4% respectively. With the resolution available, the spectra of the two most abundant isotopomers were readily assignable. At this point, the ν_{14} (c-type) and ν_{17} (a-type) bands have been assigned for both the ¹¹B₂H₆ and ¹¹B¹⁰BH₆ isotopic species and ground state and upper state constants obtained. Both bands exhibit small perturbations. A mixed r_s - r_0 structure for diborane has been obtained.