THE ROTATIONAL SPECTRUM AND MOLECULAR PROPERTIES OF CHLORYL CHLORIDE, CICIO2

HOLGER S. P. MÜLLER, AND EDWARD A. COHEN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

ClClO₂ is slightly higher in energy than its structural isomer ClOOCl,^{*a*} which has been implicated in polar ozone depletion processes. ClClO₂ may be formed from other Cl_xO_y compounds on or in stratospheric ices.^{*b c*} Therefore, its millimeter and submillimeter spectrum has been studied in a flowing system as a product of the FClO₂ + HCl reaction. The pyramidal ClClO₂ is an asymmetric prolate top, $\kappa = -0.7598$ for ³⁵Cl³⁵ClO₂. It has C_s symmetry with a strong dipole component along the *c*-axis and a smaller one along the *a*-axis. The highest quantum numbers accessed are larger than 50 and 30 for *J* and K_a , respectively, permitting rotational and centrifugal distortion constants to be determined precisely. Splittings due to both Cl nuclei have been resolved, and a quadrupole analysis will be presented. The molecular structure has been derived from isotopomers involving ³⁵Cl and ³⁷Cl. The results will be compared with those from an earlier matrix-isolation study,^{*d*} from *ab initio* calculations,^{*a*} and from data of related molecules.

^aT. J. Lee, C. McMichael Rohlfing, and J. E. Rice, J. Chem. Phys., 97, 6593, (1992)

^bC. J. Pursell, J. Conyers, and C. Denison, J. Phys. Chem., **100**, 15450, (1996)

^cJ. D. Graham, J. T. Roberts, L. D. Anderson, and V. H. Grassian, J. Phys. Chem. 100, 19551, (1996)

^dH. S. P. Müller and H. Willner, Inorg. Chem. **31**, 2527, (1992)