SPECTROSCOPIC INVESTIGATION OF THE CRYSTAL STRUCTURE OF THE BINARY SYSTEM LiIO₃-HIO₃

<u>ALEXANDER BARABASH</u>, T.GAVRILKO, A.PETROSYAN, G.PUCHKOVSKAYA, AND A.ROSHIN, *Institute of Physics, National Academy of Sciences of Ukraine, 46, Prosp. Nauki, 252022 Kiev, Ukraine.*

The lattice dynamics of the pseudo-binary system $LiIO_3-HIO_3$ has been investigated by means of the IR and Raman spectroscopies and the NQR technique. The spectral changes, observed in the $2600 - 400 \text{ cm}^{-1}$ region, indicate the formation of variable "intermolecular" hydrogen bonds $O-H\cdots O$ in the system between the quasi molecular halogenate groups IO_3^- , HIO_3 and $H(IO_3)_2^-$. By the analysis of low-frequency Raman spectra of the mixed crystals $Li_{1-x}H_xIO_3$ with varying the concentration x in the range from 0 to 1, the critical x values of HIO₃ content were evaluated at which the hydrogen bonds of different strength are formed and the different crystal structure of the binary system is observed. Thus for the concentration range 0 - 0.22 the IR absorption spectra show wide and weak O-H stretching bands. That concentration range corresponds to α -modification LiIO₃ crystal doped by protons (C_6^6 space group). Within the intermediate concentration range 0.06 < x < 0.22 two separate crystals α -LiIO₃ and 2LiIO₃-HIO₃ (with unknown crystal structure) exist as it follows from the NQR data. For concentrations x > 0.35 the vibrational spectra of the system correspond to Li-doped orthorhombic α -HIO₃ crystal. From the NQR and Raman data the amorphous ("glass") phase was detected in the concentration range 0.22 - 0.35. Our results help to solve some contradictions concerning the binary system structure obtained by different experimental methods.