PYROLYSIS of carbonyl diazide (CO(N\textsubscript{3})\textsubscript{2}) has been shown to give diazirinone (CON\textsubscript{2}).a While diazirinone decomposes over the course of a few hours under terrestrial conditions, there is the possibility for it to exist in space. In the pursuit of obtaining a rotational spectrum for diazirinone, we have started with the rotational spectroscopy of its immediate precursor, carbonyl diazide. Carbonyl diazide is highly explosive, and requires careful synthesis.b Spectra in the range of 260-360 GHz were collected at room temperature and at −60\textdegree C. \textit{Ab initio} calculations at the CCSD/cc-pVDZ level predict that the conformation where both azide groups are \textit{syn} to the carbonyl is preferred. A second conformation, where one azide is \textit{syn} and one is \textit{anti}, is calculated to lie about 2 kcal/mol higher in energy. Pure rotational transitions for the ground state and multiple low-lying excited vibrational states of the \textit{syn-syn} conformation are readily observed and assigned.