FTMW OBSERVATION AND ANALYSIS OF THE p–H$_2$–AgCl AND o–H$_2$–AgCl COMPLEX

G. S. GRUBBS II, DANIEL A. OBENCHAIN, HERBERT M. PICKETT and STEWART E. NOVICK, Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459-0180, USA (email to GSG2: ggrubbs@wesleyan.edu).

The rotational spectrum of p–H$_2$–AgCl and o–H$_2$–AgCl has been measured for the first time using a Balle-Flygare type Fourier transform microwave (FTMW) spectrometer. The nuclear quadrupole coupling constants, and centrifugal distortion constants have been determined for multiple isotopologues of both species while spin-spin coupling constants have also been determined for at least one isotopologue of the o–H$_2$ species. Substantial changes in the εQq value from the monomer occur at the Cl nucleus upon complexation with the H$_2$ and will be discussed. Experimental r_0’s for the H$_2$ C.O.M. distance to Ag and Ag distance to Cl are 1.809(2)Å and 2.2656(2)Å, respectively, for the p–H$_2$ species and will be compared to theory. Quantum chemical calculations were performed with an APFDb density functional and MP2 with an aug-cc-pVQZ basis set for the hydrogen and chlorine with the effective core potential ECP28MDFc,d for the Ag and will be presented.