FORMATION OF CH+: SHOCK CHEMISTRY IN NGC 7027

JULIE K. ANDERSON, Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85719; LUCY M. ZIURYS, Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85719; FABRICE HERPIN, LAB-OASU, France.

The formation of CH+ in the interstellar medium has been an enigma for the past 70 years. Emission from the species is found in diffuse material, even though the major pathway leading to the species, C+ + H\textsubscript{2}, is endothermic by 0.40 eV. The barrier for this reaction can be greatly reduced if the H\textsubscript{2} is vibrationally excited. Using the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory, we have mapped CH+ (J = 1 \rightarrow 0), CH+ (J = 2 \rightarrow 1), and C+ (J = 3/2 \rightarrow 1/2) across the face of the young planetary nebula, NGC 7027. Analysis of the spectra has shown that CH+, C+, and vibrationally excited H\textsubscript{2} apparently trace the same outflow in NGC 7027. Therefore CH+ in this nebula likely forms from the activated C+ + H\textsubscript{2} reaction. Spectral maps, temperatures, and abundances of CH+ will be presented along with spectral maps of C+.