The ethyl radical has been isolated and spectroscopically characterized in 4He nanodroplets. The five fundamental CH stretch bands are observed near 3 μm and have band origins shifted < 1 cm$^{-1}$ from those reported for the gas phase species.a,b The symmetric CH$_2$ stretching band (ν_1) is rotationally resolved, revealing nuclear spin statistical weights predicted by G_{12} permutation-inversion group theory. A permanent electric dipole moment of 0.28 (2) D is obtained via the Stark spectrum of the ν_1 band. The four other CH stretch fundamental bands are broadened in helium droplets and lack rotational fine structure. The approximately 1-2 cm$^{-1}$ line widths for these bands are attributed to the homogeneous broadening associated with solvent-mediated rovibrational relaxation dynamics. In addition to these five fundamentals, three A'_2 overtone/combination bands are observed and have resolved rotational substructure. These are assigned to the $2\nu_{12}$, $\nu_4+\nu_6$, and $2\nu_6$ bands through comparisons to anharmonic frequency computations at the CCSD(T)/cc-pVTZ level of theory.

\footnotesize

\begin{itemize}
\end{itemize}