The vinyl radical has been trapped in 4He nanodroplets and probed with infrared laser spectroscopy in the CH stretch region between 2850 and 3200 cm$^{-1}$. The assigned band origins for the CH$_2$ symmetric (ν_3), CH$_2$ antisymmetric (ν_2), and lone α-CH stretch (ν_1) vibrations are in good agreement with previously reported full-dimensional vibrational configuration interaction calculations.a For all three bands, a-type and b-type transitions are observed from the lowest symmetry allowed rovibrational state of each nuclear spin isomer, which allows for a determination of the tunneling splittings in both the ground and excited vibrational levels. Comparisons to gas phase millimeter-wave rotation-tunnelingb and high-resolution jet-cooled infrared spectrac reveal that the effect of the 4He solvent is to reduce the ground and ν_3 excited state tunneling splittings by $\approx20\%$. This solvent-induced modification of the tunneling dynamics can be reasonably accounted for by assuming either an $\approx2.5\%$ increase in the effective barrier height along the tunneling coordinate or an $\approx5\%$ increase in the effective reduced mass of the tunneling particles.