Sulfoxylic acid (HOSOH) is a chemical intermediate that falls roughly midway in the oxidation states of sulfur, between its highly reduced (H₂S) and oxidized (H₂SO₄) forms. It is likely formed during atmospheric oxidation of anthropogenic and natural sulfur emissions, and might also be produced by UV processing of circumstellar ices. Despite considerable theoretical work, no gas-phase spectra of sulfoxylic acid or any of its structural isomers have previously been observed. We report the detection of the rotational spectra of the C₂ and C₄ rotamers of HOSOH using a combination of Fourier transform microwave spectroscopy and microwave-microwave double resonance techniques, guided by new high-level quantum chemical calculations of their structures. The present work enables radioastronomical searches for these species, and also lays the groundwork for further chemical studies of its gas-phase formation and spectroscopic studies of other H₂SO₂ isomers.

*Present address: École Normale Supérieure de Cachan, 94235 Cachan Cedex, France*