DISPERSED FLUORESCENCE SPECTROSCOPY OF THE $B^2E' - X^2A'_2$ TRANSITION OF JET COOLED $^{14}\text{NO}_3$ and $^{15}\text{NO}_3$

MASARU FUKUSHIMA and TAKASHI ISHIWATA, Faculty of Information Sciences, Hiroshima City University, Asa-Minami, Hiroshima 731-3194, Japan.

We have generated NO$_3$ in supersonic free jet expansions and observed laser induced fluorescence (LIF) of the $B^2E' - X^2A'_2$ transition. We have measured LIF excitation spectra and dispersed fluorescence (DF) spectra from the single vibronic levels (SVL's) of the B^2E' state of $^{14}\text{NO}_3$ and $^{15}\text{NO}_3$. The vibrational structure of the $X^2A'_2$ state has been analyzed by comparing the vibrational structures of the DF spectra of the two isotopomers. The 1,053 cm$^{-1}$ band of $^{14}\text{NO}_3$ is observed as two bands at 1,038 and 1,053 cm$^{-1}$ with an intensity ratio of 4 : 5, respectively, for $^{15}\text{NO}_3$. Higher resolution measurements (~2 cm$^{-1}$ in FWHM) of the DF spectra show that the 1,053 cm$^{-1}$ band of $^{14}\text{NO}_3$ is also observed as two bands at 1,051 and 1,056 cm$^{-1}$ with an intensity ratio of 5 : 3, respectively. The 1,051 cm$^{-1}$ band is attributed to be the ν_1 (a_1') fundamental, because of its little isotope shift. There are two possibilities for another band, the band at 1,070 and 1,038 cm$^{-1}$ for $^{14}\text{NO}_3$ and $^{15}\text{NO}_3$, respectively; (1) the ν_3 (e') fundamental band, and (2) the $\nu_2 + \nu_4$ (a''_2 and e', respectively) combination band. If this is the case (1), the ν_3 band should be observed in IR spectrum, but it has yet to be observed. If (2), the intensity must be stolen from the $B^2E' - A^2E''$ transition through the ν_2 mode, the considerable transition moment of which has been predicteda. A simple consideration for the vibronic couplingb between the A^2E'' and $X^2A'_2$ states through the ν_2 mode can understand about 20% of the combination band intensity to that of the ν_3 fundamental. The higher resolution measurements of the DF spectra also show that the 1,499 cm$^{-1}$ band of $^{14}\text{NO}_3$ is much stronger than the 1,492 cm$^{-1}$ band in the electronic spectrum, while the latter is the strongest band in the IR absorption spectrumd.