Many of us have enjoyed the spectacle of a spinning top influenced by friction: rotating rapidly about a stable stationary axis, the top loses slowly its angular momentum \(j \) (and energy), slows down gradually, and then, suddenly, its axis becomes unstable, the top wobbles, and an abrupt change of the tops position follows. In other words, the system undergoes a bifurcation. In the case of the tippe top, rotation about its lower point is stable at low values of angular momentum \(J \) and becomes unstable at large \(J \). Something quite similar occurs in a freely rotating dimethylsulfoxide (DMSO, \((\text{CH}_3)_2\text{SO})\) molecule. For the first time in such large polyatomic molecule a quantum bifurcation induced by a gyroscopic destabilization was observed.

This unusual phenomenon in rotational dynamics was discovered in the rovibrational states of the bending fundamental \(\nu_{23} \) band of DMSO whose high-resolution gas phase absorption spectrum was observed along with that of \(\nu_{11} \) by Cuisset et al.\(^b\) using the exceptional properties of the AILES beamline in the Far-Infrared domain.