Supporting Information: The $\tilde{A} - \tilde{X}$ Absorption of Vinoxy Radical Revisited: Normal and Herzberg-Teller Bands Observed via Cavity Ringdown Spectroscopy

Phillip S. Thomas, Rabi Chhantyal-Pun, Neal D. Kline, and Terry A. Miller
Department of Chemistry
The Ohio State University
120 W. 18th Avenue
Columbus Ohio 43210
E-mail: tamiller@chemistry.ohio-state.edu.

December 17, 2009

Table of Contents

1. Figure 1: Comparison of experimental spectra of vinoxy generated from photolysis of MVE and EVE.

2. Figure 2: Vinoxy kinetic tests: 0^0_0, 12^1_0, and 11^1_0 bands measured at different excimer-probe delay times.

3. Table 1: Unscaled harmonic and fundamental frequencies for vinoxy in \tilde{X} and \tilde{A} states.

4. Table 2: Squared Duschinsky rotation matrix elements for the vinoxy $\tilde{A} - \tilde{X}$ transition.

5. Table 3: Energies and cartesian coordinates of optimized geometries.

6. Table 4: Input parameters for rotational simulations.
Figure 1: Cavity ringdown spectra of vinoxy radical obtained from 193 nm photolysis of methyl vinyl ether and ethyl vinyl ether. The traces have been vertically offset for clarity.
Figure 2: Cavity ringdown spectra of the 0_0^0, 12_0^1, and 11_1^1 bands of vinoxy, obtained at a variety of excimer-probe delay times. Traces taken using different delay times are vertically offset for clarity.
Table 1: Unscaled harmonic and fundamental frequencies calculated at the UB3LYP/aug-cc-pVTZ level, and unscaled harmonic frequencies calculated at the UCCSD/cc-pVDZ level for \tilde{X} and \tilde{A} state equilibrium structures of vinoxy. The number in bold at the head of each column is the zero point energy. All values are in cm$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>UB3LYP/aug-cc-pVTZ</th>
<th>CCSD/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{X} state</td>
<td>\tilde{A} state</td>
</tr>
<tr>
<td>9300.458</td>
<td>9153.934</td>
<td>9349.477</td>
</tr>
<tr>
<td>3253.254</td>
<td>3110.845</td>
<td>3271.782</td>
</tr>
<tr>
<td>3142.389</td>
<td>3037.551</td>
<td>3173.002</td>
</tr>
<tr>
<td>2944.320</td>
<td>2734.835</td>
<td>2990.651</td>
</tr>
<tr>
<td>1544.506</td>
<td>1521.109</td>
<td>1596.294</td>
</tr>
<tr>
<td>1474.959</td>
<td>1392.421</td>
<td>1440.181</td>
</tr>
<tr>
<td>1397.612</td>
<td>1364.090</td>
<td>1240.630</td>
</tr>
<tr>
<td>1160.745</td>
<td>1132.719</td>
<td>1082.818</td>
</tr>
<tr>
<td>979.915</td>
<td>959.504</td>
<td>971.444</td>
</tr>
<tr>
<td>507.107</td>
<td>500.363</td>
<td>432.295</td>
</tr>
<tr>
<td>982.477</td>
<td>955.535</td>
<td>957.023</td>
</tr>
<tr>
<td>767.526</td>
<td>718.298</td>
<td>827.052</td>
</tr>
<tr>
<td>446.106</td>
<td>421.141</td>
<td>715.781</td>
</tr>
</tbody>
</table>
Table 2: (Squared) values of Duschinsky rotation matrix elements. Rows and columns are indexed by \tilde{X} and \tilde{A} state frequencies (cm$^{-1}$), respectively. Duschinsky matrices have been computed in the harmonic approximation but are indexed by unscaled fundamental frequencies (B3LYP/aug-cc-pVTZ) and unscaled harmonic frequencies (CCSD/cc-pVDZ).

<table>
<thead>
<tr>
<th>$\downarrow \tilde{X}/\tilde{A} \Rightarrow$</th>
<th>3123</th>
<th>3011</th>
<th>2803</th>
<th>1483</th>
<th>1411</th>
<th>1208</th>
<th>1063</th>
<th>960</th>
<th>435</th>
<th>941</th>
<th>790</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>3111</td>
<td>0.981</td>
<td>0.015</td>
<td>0.000</td>
<td>0.001</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3038</td>
<td>0.015</td>
<td>0.981</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2735</td>
<td>0.000</td>
<td>0.000</td>
<td>0.995</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1521</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>1.300</td>
<td>0.218</td>
<td>0.247</td>
<td>0.347</td>
<td>0.046</td>
<td>0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1392</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.437</td>
<td>0.428</td>
<td>0.093</td>
<td>0.028</td>
<td>0.007</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1364</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.008</td>
<td>0.140</td>
<td>0.316</td>
<td>0.514</td>
<td>0.002</td>
<td>0.017</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1133</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.306</td>
<td>0.166</td>
<td>0.338</td>
<td>0.070</td>
<td>0.100</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>960</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.114</td>
<td>0.045</td>
<td>0.001</td>
<td>0.001</td>
<td>0.833</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>500</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.001</td>
<td>0.038</td>
<td>0.009</td>
<td>0.947</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>956</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.466</td>
<td>0.364</td>
<td>0.169</td>
<td>0.000</td>
</tr>
<tr>
<td>718</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.434</td>
<td>0.566</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>421</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.100</td>
<td>0.070</td>
<td>0.827</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\downarrow \tilde{X}/\tilde{A} \Rightarrow$</th>
<th>3315</th>
<th>3207</th>
<th>3119</th>
<th>1711</th>
<th>1444</th>
<th>1279</th>
<th>1103</th>
<th>972</th>
<th>440</th>
<th>965</th>
<th>818</th>
<th>725</th>
</tr>
</thead>
<tbody>
<tr>
<td>3301</td>
<td>0.988</td>
<td>0.009</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3178</td>
<td>0.009</td>
<td>0.982</td>
<td>0.005</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3001</td>
<td>0.000</td>
<td>0.005</td>
<td>0.989</td>
<td>0.002</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1605</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.188</td>
<td>0.167</td>
<td>0.246</td>
<td>0.328</td>
<td>0.065</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1479</td>
<td>0.002</td>
<td>0.000</td>
<td>0.001</td>
<td>0.355</td>
<td>0.444</td>
<td>0.109</td>
<td>0.082</td>
<td>0.004</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1409</td>
<td>0.001</td>
<td>0.000</td>
<td>0.003</td>
<td>0.003</td>
<td>0.250</td>
<td>0.223</td>
<td>0.510</td>
<td>0.000</td>
<td>0.011</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1156</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.320</td>
<td>0.105</td>
<td>0.415</td>
<td>0.052</td>
<td>0.095</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>974</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.129</td>
<td>0.032</td>
<td>0.004</td>
<td>0.002</td>
<td>0.827</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>500</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.001</td>
<td>0.024</td>
<td>0.007</td>
<td>0.963</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>979</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.572</td>
<td>0.200</td>
<td>0.226</td>
<td>0.000</td>
</tr>
<tr>
<td>709</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.340</td>
<td>0.626</td>
<td>0.034</td>
<td>0.000</td>
</tr>
<tr>
<td>441</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.087</td>
<td>0.174</td>
<td>0.737</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Table 3: Electronic energies (a.u.) and cartesian coordinates (Å) for equilibrium and vibrationally averaged structures of vinoxy.

<table>
<thead>
<tr>
<th></th>
<th>X state: E (B3LYP/aug-cc-VTZ) = -153.236833306</th>
<th>A state: E (B3LYP/aug-cc-VTZ) = -153.202871425</th>
<th>X state: E (CCSD/cc-VDZ) = -152.74437557</th>
<th>A state: E (CCSD/cc-VDZ) = -152.70931149</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equilibrium geometry</td>
<td>Vibrationally averaged geometry</td>
<td>Equilibrium geometry</td>
<td>Vibrationally averaged geometry</td>
</tr>
<tr>
<td>H</td>
<td>2.089798 -0.205347 0.000000</td>
<td>H 2.092483 -0.207670 0.000000</td>
<td>H 2.112481 -0.250739 0.000000</td>
<td>H 2.095825 -0.183697 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.055993 -0.521813 0.000000</td>
<td>C 1.061325 -0.525054 0.000000</td>
<td>C 1.136816 -0.338309 0.000000</td>
<td>C 1.119154 -1.431802 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.822507 -1.577468 0.000000</td>
<td>H 0.829568 -1.582532 0.000000</td>
<td>H 0.794016 -1.613521 0.000000</td>
<td>H 0.000000 0.385470 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000 0.426702 0.000000</td>
<td>C -0.001665 0.428965 0.000000</td>
<td>C 0.433565 0.000000</td>
<td>H 0.003584 1.490875 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.284753 1.492346 0.000000</td>
<td>H 0.287066 1.503607 0.000000</td>
<td>H 0.319631 1.502946 0.000000</td>
<td>O -1.254932 -0.065716 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.191627 0.107642 0.000000</td>
<td>O -1.195138 0.108132 0.000000</td>
<td>O -1.245014 -0.039853 0.000000</td>
<td>O -1.25014 -0.038135 0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium geometry</th>
<th>Vibrationally averaged geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.071359 0.168304 0.000000</td>
<td>H 2.078285 0.170667 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.126235 -0.347896 0.000000</td>
<td>C 1.132264 -0.348627 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.111252 -1.426765 0.000000</td>
<td>H 1.117339 -1.431672 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000 0.366576 0.000000</td>
<td>C -0.001888 0.364566 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.020091 1.465201 0.000000</td>
<td>H 0.016169 1.473117 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.245014 -0.039853 0.000000</td>
<td>O -1.248694 -0.038135 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.197319 0.132848 0.000000</td>
<td>O -1.195138 0.108132 0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.112481 -0.250739 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.058737 -0.550477 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.794016 -1.613521 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000 0.433565 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.319631 1.502946 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.197319 0.132848 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.25014 -0.039853 0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.095825 0.183697 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>1.136816 -0.338309 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.119154 -1.431802 0.000000</td>
</tr>
<tr>
<td>C</td>
<td>0.000000 0.385470 0.000000</td>
</tr>
<tr>
<td>H</td>
<td>0.003584 1.490875 0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-1.254932 -0.065716 0.000000</td>
</tr>
</tbody>
</table>
Table 4: Input parameters used for simulations of the rotational contours of vinoxy. Rotational constants were obtained from the anharmonic vibrationally-averaged structures calculated at the UB3LYP/aug-cc-pVTZ level; all spin rotation parameters are set to the \tilde{X} state values experimentally determined by Endo and Hirota.\(^1\)

<table>
<thead>
<tr>
<th>Constants</th>
<th>\tilde{X} state</th>
<th>\tilde{A} state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (cm(^{-1}))</td>
<td>2.228988</td>
<td>2.539000</td>
</tr>
<tr>
<td>B (cm(^{-1}))</td>
<td>0.381607</td>
<td>0.364225</td>
</tr>
<tr>
<td>C (cm(^{-1}))</td>
<td>0.325206</td>
<td>0.317865</td>
</tr>
<tr>
<td>ε_{aa} (cm(^{-1}))</td>
<td>-0.029987</td>
<td>-0.029987</td>
</tr>
<tr>
<td>ε_{bb} (cm(^{-1}))</td>
<td>-0.002205</td>
<td>-0.002205</td>
</tr>
<tr>
<td>ε_{cc} (cm(^{-1}))</td>
<td>-0.000022</td>
<td>-0.000022</td>
</tr>
<tr>
<td>$\varepsilon_{ab} + \varepsilon_{ba}$ (cm(^{-1}))</td>
<td>0.002813</td>
<td>0.002813</td>
</tr>
</tbody>
</table>

Control parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0 (cm(^{-1}))</td>
<td>8017</td>
</tr>
<tr>
<td>Doppler Linewidth (cm(^{-1}))</td>
<td>1</td>
</tr>
<tr>
<td>Natural Linewidth (cm(^{-1}))</td>
<td>0.004</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>298</td>
</tr>
<tr>
<td>J_{max}</td>
<td>110</td>
</tr>
<tr>
<td>ΔK_{max}</td>
<td>10</td>
</tr>
</tbody>
</table>

References