COMPARING THE ORTHO-TO-PARA RATIOS OF H_2 AND H_3^+ IN DIFFUSE INTERSTELLAR CLOUDS

NICK INDRIOLO, Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801; TAKESHI OKA, Department of Astronomy & Astrophysics and Department of Chemistry, University of Chicago, Chicago, IL 60637; THOMAS R. GEBALLE, Gemini Observatory, Hilo, HI 96720; KENNETH H. HINKLE, National Optical Astronomy Observatories, Tucson, AZ 85726; GEOFFREY A. BLAKE, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; BEN-JAMIN J. McCALL, Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

The ratio between the populations of the two lowest rotational levels of H_2 , J = 0 and J = 1, can be used to determine the temperature of interstellar gas (referred to as T_{01}). Likewise, a temperature can be inferred from the populations of the (J, K) = (1, 0) and (J, K) = (1, 1) states of H_3^+ . However, the average temperatures derived from these methods $(T_{01} \approx 60 \text{ K}, T(H_3^+) \approx 30 \text{ K})$ do not agree. Theories predict that the deviation from a Boltzmann distribution in both species is due to collisions between H_2 and H_3^+ which can change the spin alignment. Recent laboratory results confirm this deviation from a thermal distribution, and provide a relationship between the (1,0)/(1,1) ratio of H_3^+ and the (1)/(0) ratio of H_2 . We have made observations searching for H_3^+ in several sight lines with measured H_2 abundances for the purpose of determining this relationship in interstellar clouds. With such a relationship, we then show that IR observations probing the (1,0) and (1,1) states of H_3^+ can be used to estimate the H_2 temperature in highly extincted sight lines where UV spectroscopy is not possible.