SUPERSONIC FREE-JET QUANTUM CASCADE LASER MEASUREMENTS OF ν_4 FOR $\rm CF_3^{35}Cl$ AND $\rm CF_3^{37}Cl$ AND FTS MEASUREMENTS FROM 400 TO 1260 $\rm cm^{-1}$

JAMES F. KELLY, <u>THOMAS A. BLAKE</u>, ROBERT L. SAMS, *Pacific Northwest National Laboratory, P. O. Box 999, Mail Stop K8-88, Richland, WA 99352 (PNNL is operated for the US Department of Energy by the Battelle Memorial Institute under contract DE-AC05-76RL0 1830);* ARTHUR MAKI, 15012 24th Ave. S.E., *Mill Creek, WA 98012.*

A supersonic free-jet spectrum of the ν_4 band of CF₃Cl has been measured using a quantum cascade laser system. Those measurements were combined with a low temperature (-67 C) FTS spectrum of the region 1060 to 1260 cm⁻¹ to give improved values for the rovibrational constants for the ν_1 , $2\nu_5$, and ν_4 states of the CF₃³⁵Cl AND CF₃³⁷Cl. The principal perturbation found by earlier investigators in the ν_1 band is treated as a very weak Coriolis interaction at several avoided crossings of the rotational levels of the ν_1 state and the $2\nu_5$ state with kl < 0. Room temperature FTS measurements were also made for the region 400 to 970 cm⁻¹. With these new measurements we now have high resolution data on the states ν_1 , ν_2 , ν_3 , ν_4 , and ν_5 . Also included in this analysis are the overtones $2\nu_3$ and $2\nu_6$ and a few hot bands.