DETERMINATION OF THE BOLTZMANN CONSTANT BY MEANS OF DOPPLER-BROADENING THERMOMETRY ON WATER AT $1.39 \mu \mathrm{~m}$.

L. MORETTI, A. CASTRILLO, E. FASCI, M.D. DE VIZIA, Dipartimento di Matematica e Fisica, Seconda Università di Napoli, Caserta, Italy; G. GALZERANO, P. LAPORTA, Dipartimento di Fisica, Politecnico di Milano and IFN-CNR, Milano, Italy; A. MERLONE, INRIM, Istituto Nazionale di Ricerca Metrologica, Torino, Italy; and L. GIANFRANI, Dipartimento di Matematica e Fisica, Seconda Università di Napoli, Caserta, Italy.

Based upon precision laser spectroscopy in the linear regime of interaction, Doppler broadening thermometry (DBT) consists in retrieving the Doppler width from the highly-accurate observation of the absorption profile corresponding to a given atomic or molecular line in a gas sample at the thermodynamic equilibrium. We report on a DBT experiment based on a pair of offset-frequency locked extended-cavity diode lasers at $1.39 \mu \mathrm{~m}$, to probe the $4_{4,1} \rightarrow 4_{4,0}$ line of the $\mathrm{H}_{2}^{18} \mathrm{O} \nu_{1}+\nu_{3}$ band. This method allows us to perform highly-accurate and reproducible frequency scans of the probe laser around a given center frequency. A sophisticated and extremely refined spectral analysis procedure was developed for the highly-accurate retrieval of the Doppler width, taking into account the Dicke narrowing effect, the speed-dependence of relaxation rates, and the partial correlation between velocity-changing and rotational-statechanging collisions. In particular, the partially correlated speed-dependent Nelkin-Ghatak model was employed to perform the spectral analysis of 718 spectra acquired in the pressure range between 200 and 500 Pa , at the temperature of the triple point of water, using a 97%-enriched ${ }^{18} \mathrm{O}$ water sample. Doppler width retrievals allowed for a spectroscopic determination of the Boltzmann constant with a combined (type A and type B) uncertainty of 1.9×10^{-5}, which is the best result obtained so far by means of an optical method. Our determination is in full agreement with the recommended CODATA value.

