PROGRESS OF THE JILA ELECTRON EDM EXPERIMENT

HUANQIAN LOH, KEVIN C. COSSEL, MATT GRAU, <u>DANIEL N. GRESH</u>, KANG-KUEN NI, JUN YE, and ERIC A. CORNELL, *JILA*, *National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA*.

Molecules can be advantageous for the search for the electron electric dipole moment (eEDM) due to the large effective electric field experienced by a bound, unpaired electron. Furthermore, the closely-spaced states of opposite parity make the molecules easy to polarize in the lab frame. The JILA eEDM experiment currently uses HfF⁺ molecules in an ion trap to achieve long coherence times to reduce systematics.^{*a*} When an electric field is applied the eEDM signal is proportional to the shift in energy splitting between two Zeeman levels in a low-lying, metastable ${}^{3}\Delta_{1}$ state. We have previously shown efficient preparation of trapped HfF⁺ molecules in the rovibronic ground state, $X^{1}\Sigma^{+}(v = 0, J = 0)$.^{*b*} Here, we demonstrate coherent transfer of population from the ground state to the $a^{3}\Delta_{1}(v = 0, J = 1)$ state through an intermediate ${}^{3}\Pi_{0+}$ state and efficient state read-out using photodissociation. In addition, we have begun to take spectroscopy data of the hyperfine and Zeeman structure of the eEDM science state in the presence of a rotating bias electric field and a magnetic field.

^aA. E. Leanhardt et. al., Journal of Molecular Spectroscopy 270, 1-25 (2011).

^bH. Loh et. al., Journal of Chemical Physics 135, 154308 (2011).